

Marshalls

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Concrete Block Paving - Pigmented Semi Dry Mix Marshalls Plc

EPD HUB, HUB-0305

Publishing date 24 February 2023, last updated date 24 February 2023, valid until 24 February 2028

Created with One Click LCA

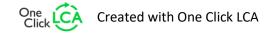
GENERAL INFORMATION

MANUFACTURER

Manufacturer	Marshalls Plc
Address	Landscape House, Premier Way, Elland HX5 9HT, England, UK
Contact details	epd@marshalls.co.uk
Website	www.marshalls.co.uk

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022 EN 16757 Product Category Rules for concrete and concrete elements
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-B1, and modules C1-C4, D
EPD author	Chris Griffiths and Robert Dorrington, Marshalls PLC
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	\square Internal certification $ ot \square$ External verification
EPD verifier	H.H, as an authorized verifier acting for EPD Hub Limited


The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Concrete Block Paving - Pigmented Semi Dry Mix
Additional labels	Keyblok (varieties), Standard Concrete Block Paving, Priora, Tegula, Drivesett Savanna, Drivesett Natural, Drivesett Coppice,Tactile Blister CBP
Product reference	N/A
Place of production	8 sites across the UK
Period for data	May 21 - Apr 22
Averaging in EPD	Multiple factories
Variation in GWP-fossil for A1-A3	+1.29 to -1.03 %

ENVIRONMENTAL DATA SUMMARY

Declared unit	1m²
Declared unit mass	138 kg
GWP-fossil, A1-A3 (kgCO2e)	1,22E1
GWP-total, A1-A3 (kgCO2e)	1,18E1
Secondary material, inputs (%)	0.0469
Secondary material, outputs (%)	93.0
Total energy use, A1-A3 (kWh)	24.1
Total water use, A1-A3 (m3e)	0.575

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Marshalls is the UKs largest manufacturer and supplier of building and hard landscaping products, including paving blocks and flags, kerbs, drainage channels, bricks, roof tiles, street furniture and natural stone paving. It provides products for both commercial and domestic markets.

PRODUCT DESCRIPTION

The product is a concrete block paving unit. Blocks are laid in an interlocking pattern on a sand and aggregate sub-base to create an attractive trafficable surface.

This document is for a single-layer (or through mix) block manufactured using a semi-dry mix, comprising of the same material and pigment all the way through the block.

Concrete blocks are manufactured according to BS EN 1338:2003, which requires the strength of the blocks to be no lower than 3.6MPa and the failing load not lower than 250N/mm. Other factors which must be satisfied to achieve the standard include slip / skid resistance, freeze / thaw performance and water absorption. Test methods and minimum criteria are detailed in the standard.

The nominated depth for the product specified in this document is 60mm. Conversion factors for different depths are listed in the document.

Further information can be found at www.marshalls.co.uk.

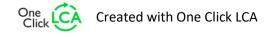
PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	N/A	-
Minerals	100	EU
Fossil materials	N/A	-
Bio-based materials	N/A	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C


Biogenic carbon content in packaging, kg C 0.129

FUNCTIONAL UNIT AND SERVICE LIFE

	-
Declared unit VP-011	1m²
Mass per declared unit VP-012	138 kg
Functional unit	1m ² of concrete block paving with useful service life of 50 years
Reference service life	50 years

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

	rodu stage			embly age		Use stage End of life stage										Beyond the system boundaries			
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4		D		
X	x	x	X	X	X	MND MND MND MND MND x x x										x			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demo	Transport	Waste	Disposal	Reuse	Recovery	Recycling	

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

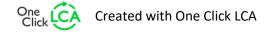
The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Through-mix concrete blocks are manufactured using a semi-dry concrete mix. The specified blend of aggregates, binder material, water and admixtures is dispensed from hoppers into a mixer. The mixture is then emptied into a mould. A precision-cut tamper plate applies pressure to the top of each cell in the mould. The tamper plate lifts and the mould is removed, leaving a number of cast concrete block units on a board. The board is moved to a chamber where the blocks remain in place while they cure and achieve strength. The length of time in the curing chamber is dependent on atmospheric conditions; on very rare occasions some heat is required to accelerate this process but usually the concrete cures naturally

via an exothermic process. Once sufficiently cured, the blocks are collected by robot (cubed) and stacked on a banding machine.

Any water lost during manufacture is recycled - collected and reintroduced to the mix. Material waste during manufacture is negligible.

Straps are secured around the blocks. In the majority of cases, the blocks are stacked in such a way as to leave voids near the base which allow FLT forks to penetrate the stack and transport it without the need for a pallet.


Some products require an additional protective plastic film hood (to protect the top layer and / or to keep the pack secure). In these cases, the hood is placed over the pack by robot, and then the whole pack is passed through an oven to shrink the film securely round the blocks.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

A4: During the time period measured, manufacture of through mix concrete blocks took place at eight different sites spread over the UK: Carluke, Eaglescliffe, Falkirk, Newport, Ramsbottom, Sandy, St Ives & Sittingbourne. Transport to site or yard is undertaken by articulated lorries with Euro 6 engines. We have calculated that the average journey undertaken by these products from manufacturing site to installation site during the time period allocated was 103km.

A5: In the UK, installation of concrete block paving is a manual process. Blocks are laid by hand.

Marshalls

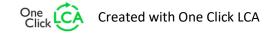
PRODUCT USE AND MAINTENANCE (B1-B7)

B1: The carbonation (sequestration) value has been calculated as per methodology outlined in EN 16757:2022.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

C1: In the UK, removal of concrete block pavers is a manual process.

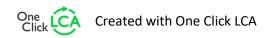

C2: It is assumed that 7% of product is transported 50km to a waste processing site to be landfilled, and 93% of product is reused on site. This is evidenced on UK Government's "Statistics on Construction Waste" website:

7. Recovery rate from non-hazardous construction and demolition (C&D) waste - Table 8: England, 2010–2020: https://www.gov.uk/government/statistics/uk-waste-data/uk-statistics-on-waste#recovery-rate-from-non-hazardous-construction-and-demolition-cd-waste

C3: All material (whether used on site or treated at a waste processing facility) will be crushed.

C4: It is assumed that 10% of materials that leaves site will go to landfill because it will be too fine to use as aggregate.

D: Incineration of the strapping and packaging generates energy. Concrete reused at end-of-life prevents virgin aggregate being used.



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

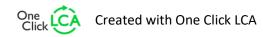
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	Not applicable
Ancillary materials	Not applicable
Manufacturing energy and waste	Allocated by mass or volume

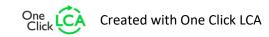

AVERAGES AND VARIABILITY

Type of average	Multiple factories
Averaging method	Averaged by shares of total mass
Variation in GWP-fossil for A1-A3	+1.29 to -1.03 %

Primary data represents the 8 Marshalls sites at which block paving is manufactured. All 8 products covered by this EPD use the same mix design with minor differences in pigmentation. Tegula products are subject to a secondary process (tumbling, to artificially weather the product) and Priora products have more pronounced nibs round the edge of each unit. Neither of these features makes a material difference to 1m² of product; the only material difference is that some of these products are sold in different depths (50mm, 60mm or 80mm).

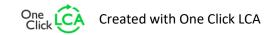
The data was used to calculate average impacts for the product. The variability of the primary data or the emissions between the manufacturing sites did not amount to more than 10% for the relevant data. The primary data was averaged by calculating a weighed average of the sites consumption of raw materials and energy, and production of wastes. The share of production volume per each site was used in the weighting.

Primary data represents the manufacturing of all through mix concrete block paving products (listed at the start of this document). The data was used to calculate average impacts for the products. The variability of the primary data or the emissions between the products did not amount to more than 10% of the relevant data (the highest compared to the lowest). The primary data was averaged by calculating a weighed average of the products consumption of raw materials, energy and production of wastes. The production amount mass shares per each product was used in the weighting.



LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.



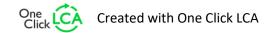
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP - total ¹⁾	kg CO₂e	1,1E1	7,81E-1	5,87E-2	1,18E1	1,24E0	9,22E-1	-3,77E0	MND	MND	MND	MND	MND	MND	0E0	6,02E-1	5,14E-1	5,1E-2	1,04E0
GWP - fossil	kg CO₂e	1,08E1	7,8E-1	6,33E-1	1,22E1	1,25E0	3,28E-1	-3,77E0	MND	MND	MND	MND	MND	MND	0E0	6,01E-1	5,14E-1	5,09E-2	-3,33E0
GWP - biogenic	kg CO₂e	1,63E-1	5,65E-4	-5,77E-1	-4,14E-1	9,49E-4	5,94E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	4,56E-4	1,43E-4	1,01E-4	4,38E0
GWP - LULUC	kg CO₂e	4,59E-3	2,35E-4	2,84E-3	7,67E-3	3,93E-4	2,27E-6	0E0	MND	MND	MND	MND	MND	MND	0E0	1,89E-4	4,34E-5	1,51E-5	-6,54E-3
Ozone depletion pot.	kg CFC- 11e	5,02E-7	1,83E-7	5,12E-8	7,37E-7	3,07E-7	1,22E-9	0E0	MND	MND	MND	MND	MND	MND	0E0	1,48E-7	1,11E-7	2,09E-8	-2,83E-7
Acidification potential	mol H+e	3,62E-2	3,28E-3	3,53E-3	4,3E-2	4,03E-3	1,03E-4	0E0	MND	MND	MND	MND	MND	MND	0E0	1,93E-3	5,37E-3	4,83E-4	-2,85E-2
EP-freshwater ²⁾	kg Pe	1,62E-4	6,35E-6	2,49E-5	1,93E-4	1,06E-5	1,12E-7	0E0	MND	MND	MND	MND	MND	MND	0E0	5,1E-6	2,08E-6	6,15E-7	-1,96E-4
EP-marine	kg Ne	9,06E-3	9,87E-4	8,76E-4	1,09E-2	8,85E-4	5,16E-5	0E0	MND	MND	MND	MND	MND	MND	0E0	4,25E-4	2,37E-3	1,66E-4	-3,76E-3
EP-terrestrial	mol Ne	1,08E-1	1,09E-2	9,66E-3	1,29E-1	9,84E-3	5,03E-4	0E0	MND	MND	MND	MND	MND	MND	0E0	4,73E-3	2,6E-2	1,83E-3	-4,67E-2
POCP ("smog")3)	kg NMVOCe	2,75E-2	3,51E-3	3,31E-3	3,43E-2	3,87E-3	1,26E-4	0E0	MND	MND	MND	MND	MND	MND	0E0	1,86E-3	7,15E-3	5,32E-4	-1,25E-2
ADP-minerals & metals ⁴⁾	kg Sbe	1,21E-4	9,76E-6	9,49E-6	1,4E-4	2,23E-5	1,42E-7	0E0	MND	MND	MND	MND	MND	MND	0E0	1,07E-5	7,84E-7	4,65E-7	-1,16E-4
ADP-fossil resources	MJ	5,92E1	8,83E0	1,34E1	8,14E1	2,03E1	1,07E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	9,76E0	7,07E0	1,42E0	-5,04E1
Water use ⁵⁾	m³e depr.	1,93E0	4,51E-2	2,98E-1	2,27E0	7,56E-2	-2,26E-3	0E0	MND	MND	MND	MND	MND	MND	0E0	3,63E-2	1,32E-2	6,58E-2	-2,13E0

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	4,21E0	1,11E-1	5,81E0	1,01E1	2,56E-1	2,02E-3	0E0	MND	MND	MND	MND	MND	MND	0E0	1,23E-1	3,82E-2	1,15E-2	-1,25E1
Renew. PER as material	MJ	0E0	0E0	5,64E0	5,64E0	0E0	-5,64E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Total use of renew. PER	MJ	4,21E0	1,11E-1	1,15E1	1,58E1	2,56E-1	-5,64E0	0E0	MND	MND	MND	MND	MND	MND	0E0	1,23E-1	3,82E-2	1,15E-2	-1,25E1
Non-re. PER as energy	MJ	5,76E1	8,83E0	8,81E0	7,52E1	2,03E1	1,07E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	9,76E0	7,07E0	1,42E0	-5,04E1
Non-re. PER as material	MJ	1,56E0	0E0	4,58E0	6,14E0	0E0	-4,52E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	-1,45E0	-1,09E-1	0E0
Total use of non-re. PER	MJ	5,92E1	8,83E0	1,34E1	8,14E1	2,03E1	-4,41E0	0E0	MND	MND	MND	MND	MND	MND	0E0	9,76E0	5,62E0	1,31E0	-5,04E1
Secondary materials	kg	1,3E-2	0E0	5,17E-2	6,47E-2	0E0	0E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Renew. secondary fuels	MJ	0E0	0E0	1,53E0	1,53E0	0E0	0E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Non-ren. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Use of net fresh water	m³	5,71E-1	1,83E-3	2,57E-3	0.575	4,23E-3	1,65E-4	0E0	MND	MND	MND	MND	MND	MND	0E0	2,03E-3	6,24E-4	1,56E-3	-1,52E-1

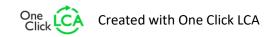

⁸⁾ PER = Primary energy resources.

END OF LIFE - WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	1,99E-1	8,58E-3	3,5E-2	2,43E-1	1,97E-2	3,74E-3	0E0	MND	MND	MND	MND	MND	MND	0E0	9,48E-3	0E0	1,33E-3	-2,79E-1
Non-hazardous waste	kg	7,12E0	9,45E-1	1,05E0	9,12E0	2,18E0	4,36E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	1,05E0	0E0	9,66E0	-4,55E0
Radioactive waste	kg	3,24E-4	6,06E-5	3,24E-5	4,17E-4	1,4E-4	4,06E-7	0E0	MND	MND	MND	MND	MND	MND	0E0	6,7E-5	0E0	9,41E-6	-2,65E-4

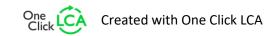
END OF LIFE - OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1- A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for reuse	kg	0E0	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	1,28E2	0E0	0E0
Materials for recycling	kg	0E0	0E0	0E0	0E0	0E0	0E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Materials for energy rec	kg	0E0	0E0	0E0	0E0	0E0	8E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0
Exported energy	MJ	0E0	0E0	0E0	0E0	0E0	6,67E0	0E0	MND	MND	MND	MND	MND	MND	0E0	0E0	0E0	0E0	0E0



ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A 1	A2	А3	A1-A3	Α4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,07E1	5,63E-1	6,13E-1	1,19E1	1,24E0	3,26E-1	-3,77E0	MND	MND	MND	MND	MND	MND	0E0	5,95E-1	5,1E-1	4,99E-2	-3,24E0
Ozone depletion Pot.	kg CFC-11e	4,32E-7	1,06E-7	4,65E-8	5,85E-7	2,44E-7	1,01E-9	0E0	MND	MND	MND	MND	MND	MND	0E0	1,17E-7	8,78E-8	1,66E-8	-2,7E-7
Acidification	kg SO₂e	2,91E-2	1,16E-3	2,81E-3	3,3E-2	2,66E-3	6,94E-5	0E0	MND	MND	MND	MND	MND	MND	0E0	1,28E-3	7,58E-4	2,01E-4	-2,33E-2
Eutrophication	kg PO₄³e	7,01E-3	2,33E-4	1,05E-3	8,29E-3	5,37E-4	2,2E-4	0E0	MND	MND	MND	MND	MND	MND	0E0	2,58E-4	1,34E-4	3,89E-5	-5,78E-3
POCP ("smog")	kg C ₂ H ₄ e	9,98E-4	7,32E-5	2,39E-4	1,31E-3	1,53E-4	1,99E-6	0E0	MND	MND	MND	MND	MND	MND	0E0	7,35E-5	7,81E-5	1,48E-5	-1,13E-3
ADP-elements	kg Sbe	1,21E-4	9,76E-6	9,49E-6	1,4E-4	2,23E-5	1,42E-7	0E0	MND	MND	MND	MND	MND	MND	0E0	1,07E-5	7,84E-7	4,65E-7	-1,16E-4
ADP-fossil	MJ	5,92E1	8,83E0	1,34E1	8,14E1	2,03E1	1,07E-1	0E0	MND	MND	MND	MND	MND	MND	0E0	9,76E0	7,07E0	1,42E0	-5,04E1



CONVERSION TABLE FOR ALTERNATIVE DEPTHS

This EPD is calculated for 60mm block. The correlation between the material and energy inputs to calculate A1-A3 data is linear. Therefore, to calculate A1-A3 values for a different depth, apply the percentages in the table below to the A1-A3 number shown within this document.

The carbonation (sequestration) values for module B1 have been calculated as per methodology outlined in EN 16757:2022 and are also outlined in the table below.

Unit Depth		B1			
(mm)	Conversion Factor	kg CO ₂ e - fossil	kg CO ₂ e - total	kg CO₂e	
50	-16.60%	10.2	9.8	-3.56	
60	0	12.2	11.8	-3.77	
80	33.30%	16.2	15.7	-4.19	

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

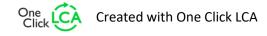
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited 24.02.2023

